Copied to
clipboard

G = C24.4D6order 192 = 26·3

3rd non-split extension by C24 of D6 acting via D6/C2=S3

non-abelian, soluble, monomial

Aliases: C24.4D6, C23.11D12, C23.2Dic6, C4⋊(A4⋊C4), (C4×A4)⋊1C4, A42(C4⋊C4), C2.1(C4⋊S4), (C2×C4).13S4, (C2×A4).4D4, (C2×A4).2Q8, C2.2(A4⋊Q8), C22⋊(C4⋊Dic3), (C23×C4).5S3, C22.15(C2×S4), (C22×C4)⋊2Dic3, C23.4(C2×Dic3), (C22×A4).5C22, (C2×C4×A4).2C2, C2.4(C2×A4⋊C4), (C2×A4⋊C4).2C2, (C2×A4).8(C2×C4), SmallGroup(192,971)

Series: Derived Chief Lower central Upper central

C1C22C2×A4 — C24.4D6
C1C22A4C2×A4C22×A4C2×A4⋊C4 — C24.4D6
A4C2×A4 — C24.4D6
C1C22C2×C4

Generators and relations for C24.4D6
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e6=b, f2=a, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, fcf-1=ede-1=cd=dc, ece-1=d, df=fd, fef-1=be5 >

Subgroups: 394 in 109 conjugacy classes, 27 normal (19 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C2×C4, C2×C4, C23, C23, Dic3, C12, A4, C2×C6, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C24, C2×Dic3, C2×C12, C2×A4, C2.C42, C2×C22⋊C4, C2×C4⋊C4, C23×C4, C4⋊Dic3, A4⋊C4, C4×A4, C22×A4, C23.7Q8, C2×A4⋊C4, C2×C4×A4, C24.4D6
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Q8, Dic3, D6, C4⋊C4, Dic6, D12, C2×Dic3, S4, C4⋊Dic3, A4⋊C4, C2×S4, A4⋊Q8, C4⋊S4, C2×A4⋊C4, C24.4D6

Character table of C24.4D6

 class 12A2B2C2D2E2F2G34A4B4C4D4E4F4G4H4I4J4K4L6A6B6C12A12B12C12D
 size 111133338226612121212121212128888888
ρ11111111111111111111111111111    trivial
ρ2111111111-1-1-1-1-1111-1-1-11111-1-1-1-1    linear of order 2
ρ3111111111-1-1-1-11-1-1-1111-1111-1-1-1-1    linear of order 2
ρ41111111111111-1-1-1-1-1-1-1-11111111    linear of order 2
ρ511-1-1-111-11-11-11ii-i-i-i-iii-1-11-111-1    linear of order 4
ρ611-1-1-111-11-11-11-i-iiiii-i-i-1-11-111-1    linear of order 4
ρ711-1-1-111-111-11-1-ii-i-iii-ii-1-111-1-11    linear of order 4
ρ811-1-1-111-111-11-1i-iii-i-ii-i-1-111-1-11    linear of order 4
ρ92-22-22-22-220000000000002-2-20000    orthogonal lifted from D4
ρ1022222222-1-2-2-2-200000000-1-1-11111    orthogonal lifted from D6
ρ1122222222-1222200000000-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ122-22-22-22-2-1000000000000-1113-33-3    orthogonal lifted from D12
ρ132-22-22-22-2-1000000000000-111-33-33    orthogonal lifted from D12
ρ1422-2-2-222-2-1-22-220000000011-11-1-11    symplectic lifted from Dic3, Schur index 2
ρ152-2-22-2-222-10000000000001-1133-3-3    symplectic lifted from Dic6, Schur index 2
ρ162-2-22-2-222-10000000000001-11-3-333    symplectic lifted from Dic6, Schur index 2
ρ172-2-22-2-2222000000000000-22-20000    symplectic lifted from Q8, Schur index 2
ρ1822-2-2-222-2-12-22-20000000011-1-111-1    symplectic lifted from Dic3, Schur index 2
ρ193333-1-1-1-10-3-3111-11-1-11-110000000    orthogonal lifted from C2×S4
ρ203333-1-1-1-1033-1-111-11-11-1-10000000    orthogonal lifted from S4
ρ213333-1-1-1-10-3-311-11-111-11-10000000    orthogonal lifted from C2×S4
ρ223333-1-1-1-1033-1-1-1-11-11-1110000000    orthogonal lifted from S4
ρ2333-3-31-1-1103-3-11-iii-i-iii-i0000000    complex lifted from A4⋊C4
ρ2433-3-31-1-1103-3-11i-i-iii-i-ii0000000    complex lifted from A4⋊C4
ρ2533-3-31-1-110-331-1-i-i-ii-iiii0000000    complex lifted from A4⋊C4
ρ2633-3-31-1-110-331-1iii-ii-i-i-i0000000    complex lifted from A4⋊C4
ρ276-66-6-22-2200000000000000000000    orthogonal lifted from C4⋊S4
ρ286-6-6622-2-200000000000000000000    symplectic lifted from A4⋊Q8, Schur index 2

Smallest permutation representation of C24.4D6
On 48 points
Generators in S48
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 13)(8 14)(9 15)(10 16)(11 17)(12 18)(25 39)(26 40)(27 41)(28 42)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 37)(36 38)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 42)(2 29)(3 21)(4 45)(5 32)(6 24)(7 48)(8 35)(9 15)(10 39)(11 26)(12 18)(13 34)(14 37)(16 25)(17 40)(19 28)(20 43)(22 31)(23 46)(27 41)(30 44)(33 47)(36 38)
(1 28)(2 20)(3 44)(4 31)(5 23)(6 47)(7 34)(8 14)(9 38)(10 25)(11 17)(12 41)(13 48)(15 36)(16 39)(18 27)(19 42)(21 30)(22 45)(24 33)(26 40)(29 43)(32 46)(35 37)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 38 19 36)(2 37 20 35)(3 48 21 34)(4 47 22 33)(5 46 23 32)(6 45 24 31)(7 44 13 30)(8 43 14 29)(9 42 15 28)(10 41 16 27)(11 40 17 26)(12 39 18 25)

G:=sub<Sym(48)| (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,13)(8,14)(9,15)(10,16)(11,17)(12,18)(25,39)(26,40)(27,41)(28,42)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,37)(36,38), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,42)(2,29)(3,21)(4,45)(5,32)(6,24)(7,48)(8,35)(9,15)(10,39)(11,26)(12,18)(13,34)(14,37)(16,25)(17,40)(19,28)(20,43)(22,31)(23,46)(27,41)(30,44)(33,47)(36,38), (1,28)(2,20)(3,44)(4,31)(5,23)(6,47)(7,34)(8,14)(9,38)(10,25)(11,17)(12,41)(13,48)(15,36)(16,39)(18,27)(19,42)(21,30)(22,45)(24,33)(26,40)(29,43)(32,46)(35,37), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,38,19,36)(2,37,20,35)(3,48,21,34)(4,47,22,33)(5,46,23,32)(6,45,24,31)(7,44,13,30)(8,43,14,29)(9,42,15,28)(10,41,16,27)(11,40,17,26)(12,39,18,25)>;

G:=Group( (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,13)(8,14)(9,15)(10,16)(11,17)(12,18)(25,39)(26,40)(27,41)(28,42)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,37)(36,38), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,42)(2,29)(3,21)(4,45)(5,32)(6,24)(7,48)(8,35)(9,15)(10,39)(11,26)(12,18)(13,34)(14,37)(16,25)(17,40)(19,28)(20,43)(22,31)(23,46)(27,41)(30,44)(33,47)(36,38), (1,28)(2,20)(3,44)(4,31)(5,23)(6,47)(7,34)(8,14)(9,38)(10,25)(11,17)(12,41)(13,48)(15,36)(16,39)(18,27)(19,42)(21,30)(22,45)(24,33)(26,40)(29,43)(32,46)(35,37), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,38,19,36)(2,37,20,35)(3,48,21,34)(4,47,22,33)(5,46,23,32)(6,45,24,31)(7,44,13,30)(8,43,14,29)(9,42,15,28)(10,41,16,27)(11,40,17,26)(12,39,18,25) );

G=PermutationGroup([[(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,13),(8,14),(9,15),(10,16),(11,17),(12,18),(25,39),(26,40),(27,41),(28,42),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,37),(36,38)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,42),(2,29),(3,21),(4,45),(5,32),(6,24),(7,48),(8,35),(9,15),(10,39),(11,26),(12,18),(13,34),(14,37),(16,25),(17,40),(19,28),(20,43),(22,31),(23,46),(27,41),(30,44),(33,47),(36,38)], [(1,28),(2,20),(3,44),(4,31),(5,23),(6,47),(7,34),(8,14),(9,38),(10,25),(11,17),(12,41),(13,48),(15,36),(16,39),(18,27),(19,42),(21,30),(22,45),(24,33),(26,40),(29,43),(32,46),(35,37)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,38,19,36),(2,37,20,35),(3,48,21,34),(4,47,22,33),(5,46,23,32),(6,45,24,31),(7,44,13,30),(8,43,14,29),(9,42,15,28),(10,41,16,27),(11,40,17,26),(12,39,18,25)]])

Matrix representation of C24.4D6 in GL7(𝔽13)

12000000
01200000
00120000
00012000
0000100
0000010
0000001
,
12000000
01200000
0010000
0001000
0000100
0000010
0000001
,
1000000
0100000
0010000
0001000
00001200
00000120
0000001
,
1000000
0100000
0010000
0001000
00001200
0000010
00000012
,
7300000
101000000
0011000
00120000
0000001
0000100
0000010
,
8500000
0500000
0055000
0008000
00000012
00000120
00001200

G:=sub<GL(7,GF(13))| [12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12],[7,10,0,0,0,0,0,3,10,0,0,0,0,0,0,0,1,12,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0],[8,0,0,0,0,0,0,5,5,0,0,0,0,0,0,0,5,0,0,0,0,0,0,5,8,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12,0,0] >;

C24.4D6 in GAP, Magma, Sage, TeX

C_2^4._4D_6
% in TeX

G:=Group("C2^4.4D6");
// GroupNames label

G:=SmallGroup(192,971);
// by ID

G=gap.SmallGroup(192,971);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-2,2,28,141,64,1124,4037,285,2358,475]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^6=b,f^2=a,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,f*c*f^-1=e*d*e^-1=c*d=d*c,e*c*e^-1=d,d*f=f*d,f*e*f^-1=b*e^5>;
// generators/relations

Export

Character table of C24.4D6 in TeX

׿
×
𝔽